If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=147
We move all terms to the left:
4x^2-(147)=0
a = 4; b = 0; c = -147;
Δ = b2-4ac
Δ = 02-4·4·(-147)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{3}}{2*4}=\frac{0-28\sqrt{3}}{8} =-\frac{28\sqrt{3}}{8} =-\frac{7\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{3}}{2*4}=\frac{0+28\sqrt{3}}{8} =\frac{28\sqrt{3}}{8} =\frac{7\sqrt{3}}{2} $
| 1/2-8/3y=-5/4 | | 10x=7x+180 | | f3+ 12=16 | | 5a+45=5a+45 | | (h+3)(h+3)(h+3)=300 | | (h+3)^3=300 | | Y-10=-1/2x-18 | | (h+3)^3=10 | | 2x-10=8-4(x-3) | | (5x+8/9)+(2x+9/3)=10 | | 4x+4=7x-9 | | (x^2+6x)^2+13(x^2+6x)=-40 | | N+2n+4n+6n=126 | | 9x+8.2=6.1x-9.3 | | 12=6q | | 27x-15=28x+24 | | 18x+81=15x+24 | | 3-5x=-5x+18-x | | 2x/(2x+10)=1/(2x+10)+3/2 | | 8−v=-2v | | 17+4x+9=11x-9 | | 4t16−2t=t+9+4t16, | | 23+y-19=79 | | x^2-68x+184=0 | | 3g+(-7+4g)=1-g | | -44=-w/3 | | -3v-6=-4 | | 9x~7=29 | | -14=g/3+-10 | | 3x+6=−135;−45,−46,−47 | | 3×+15=3(x+5) | | 2n+44=4(n+9)-3n |